基于模型的数据同化与数据驱动的机器学习



活动地点:腾讯 会议

活动时间:2020-08-28 16:00:00

报告主题:Model-based Data Assimilation versus Data-driven Machine Learning(基于模型的数据同化与数据驱动的机器学习)

报告人:Haixiang Ling 教授(荷兰代尔夫特理工大学应用数学系)

报告时间:2020年8月28日(周五) 16:00-18:00

参会方式:腾讯 会议

会议ID:会议ID:876 571 395

会议密码:202028

会议地点:https://meeting.tencent.com/s/Y581PQnWVDxf

主办部门:上海大学运筹与优化开放实验室-国际科研合作平台、上海市运筹学会、上海大学理学院数学系

报告摘要:Uncertainty is common in real life, both mathematical-physical models and observations contain uncertainties. Data assimilation is a method which uses the information of observation data to reduce the uncertainty in the model consequently improving the forecast accuracy of the model. Machine learning is a data-driven method which tries to find the important features and their relations from the data, in contrast to model-based data assimilation, machine learning techniques do not require a mathematical-physical model and try to fit the data into some functional relationship through an optimization procedure. In this sense machine learning is therefore an “interpolation” method without paying attention to “extrapolation”. Combining the power of the model-based data assimilation method and the data-driven machine learning technique is the focus of many recent research, in this talk we will discuss some examples of this development.

欢迎教师、学生参加!

  • 快速导航
  • 国际交流

  • 上海大学主页

  • 上海大学官方微博

  • 上海大学公众号

  • 上海大学信息门户

版权所有 © 上海大学   沪ICP备09014157   地址:上海市宝山区上大路99号   邮编:200444   电话总机:021-96928188   校内电话查询
互联网违法和不良信息举报   举报电话   举报邮箱   沪公网安备31009102000049号
技术支持:上海大学信息化工作办公室   联系我们