婴儿脑成像计算方法

2019.09.24

投稿:彭蕾部门:通信与信息工程学院浏览次数:

活动信息

时间: 2019年09月25日 10:00

地点: 校本部东区翔英大楼T706室

行健讲坛学术讲座

412

时间: 2019925日(周三)上午10:00

地点: 校本部东区翔英大楼T706

讲座: Image Computing in Baby Brain Mapping

演讲者: 李刚助理教授,北卡罗来纳大学教堂山分校

 

演讲者简介: 

李刚博士,美国北卡罗来纳大学教堂山分校(University of North Carolina at Chapel Hill)放射系和生物医学工程系助理教授。主要研究方向为开发神经影像智能计算和分析方法,用于研究婴幼儿和胎儿阶段脑结构和功能的发育和相关的脑发育疾病。在国际著名学术期刊和会议发表论文150多篇,包括Cell, PNAS, Cerebral Cortex, Journal of Neuroscience, NeuroImage, Brain Structure and Function, Human Brain Mapping, Medical Image Analysis, IEEE Trans. on Medical Imaging, IPMI, MICCAI等。论文被引用3000多次,谷歌学术H-index33。主持多项NIH科研项目, 获得NIH Career Award

讲座摘要:

The first postnatal years are an exceptionally dynamic and critical period of structural, functional and connectivity development of the human brain. The increasing availability of non-invasive infant brain MR images provides unprecedented opportunities for accurate and reliable charting of dynamic early brain developmental trajectories in understanding normative and aberrant growth. However, infant brain MR images typically exhibit reduced tissue contrast, large within-tissue intensity variations, and regionally-heterogeneous, dynamic changes, in comparison with adult brain MR images. Consequently, the existing computational tools developed typically for adult brains are not suitable for infant brain MR image processing. To address these challenges, infant-tailored computational methods have been proposed for computational neuroanatomy of infant brains. In this presentation, I will introduce our pioneered infant-dedicated computational tools for cortical surface-based analysis of early brain development. Several components in our tools capitalize on deep learning techniques. I will also show some neuroscience applications of our tools in revealing the dynamic, nonlinear and region-specific development of baby brains.

邀请人:上海大学通信与信息工程学院 施俊教授

欢迎广大教师和学生参加!