一类源于血管生成的拟线性双曲-抛物耦合方程的适定性研究

2025.11.05

投稿:邵奋芬部门:理学院浏览次数:

活动信息

报告题目 (Title):Some progress on a quasi-linear hyperbolic-parabolic model for vasculogenesis

(一类源于血管生成的拟线性双曲-抛物耦合方程的适定性研究)

报告人 (Speaker):彭红云 教授(广东工业大学)

报告时间 (Time):2025年11月6日(周四)9:00

报告地点 (Place):腾讯会议:892-349-333

邀请人(Inviter):厚晓凤

主办部门:上海大学数学系

报告摘要:

In this talk, we are concerned with a quasi-linear hyperbolic-parabolic system of persistence and endogenous chemotaxis modelling vasculogenesis. Under some suitable structural assumption on the pressure function, we show that the solution of the concerned system will locally and asymptotically converge to this nonlinear diffusion wave if the wave strength is small.