基于图的结点数的二项式系数的推广

2016.11.17

投稿:沈洁部门:管理学院浏览次数:

活动信息

时间: 2016年11月30日 09:30

地点: 校本部东区管理学院420室

上海管理论坛第206期(Anna Khmelnitskaya,俄罗斯格勒州立大学

题目Generalization of binomial coefficients to numbers on the nodes of graphs基于图的结点数的二项式系数的推广)

演讲人Anna Khmelnitskaya,俄罗斯格勒州立大学副教授

主持人单而芳,上海大学管理学院教授

20161130日(周三)上午9:30

:管理学院420

主办单位:上海大学管理学院、上海大学管理学院青年教师联谊会

演讲内容简介:

The topic of this work does not relate directly to the game theory, but the interest to this study was strongly influenced by our study of Shapley-type solutions for cooperative games with limited cooperation introduced by communication graphs. Without restrictions on cooperation the classical Shapley value assigns to each player as a payoff the average of the players’ marginal contributions with respect to all possible orderings of the players. However, in case of limited cooperation represented by a communication graph not all orderings of the players are feasible, but only those that are consistent with the graph. When the graph is a linear graph, the numbers of feasible orderings starting from each of its nodes are given by the binomial coefficients.

演讲人简介

Anna Khmelnitskaya 俄罗斯格勒州立大学副教授, 博弈论研究专家。毕业于俄罗斯格勒州立大学(在后苏联时期改名圣彼得堡州立大学)数学与力学学院, 并获博士学位。自2002至今,Khmelnitskaya博士受聘于荷兰Twente大学应用数学系客座研究员。在博弈论方向, KhmelnitskayEuropean Journal of Operational Research, Annals of Operations Research, International Journal of Game Theory, Discrete Applied Mathematics, Theory and Decision, Insurance: Mathematics and Economics, Social Choice and Welfare, Economic Letters, Operations Research Letters, Mathematical Social Sciences等重要学术期刊上发表论文50多篇.其学术成就在受限合作博弈领域有较大影响。她的研究兴趣是:具有限制结构的合作博弈及其在经济学中的应用。研究主要内容是:具有联盟结构、图结构和有向图结构等结构的合作博弈的解的表示、刻画和在经济学中应用等问题。

欢迎广大师生参加!